Mathematics: Level 4 NUMBER Rational numbers can be represented and operated on in a variety of ways to solve problems.									
Strategies and Knowledge		S	P	T	Strategies and Knowledge		S	P	T
I have strong mental strategies and show critical choice, (mental, machine or paper) recognise when to use estimation, check calculated answers.	$\begin{array}{\|ll} \text { eg } & \\ & 37+41+40+ \\ & 38=[] \text { as } 4 \times \\ & 40-4, \\ \bullet & 24 \times 36=20 \times \\ & 36+4 \times 36, \\ \bullet & 9 \times 78=9 \times 80 \\ & -9 \times 2,276 \div \\ & 12=240 \div 12 \\ & +36 \div 12, \\ - & 12 \times 33=4 \times \\ & 99 \\ - & 216 \div 12=216 \\ & \div 2 \div 2 \div 3 \\ - & 354 \div 6=[] \text { as } \\ & 6 \times[]=354, \end{array}$				I know how to find answers of 56 using decimal strateg - Multiple fractions w and use multiplicati solve e.g. 1.6×0.4, as 16 0.3 as $24 \div 3 \times 10=$	to problems such as 40% $0.4 \times 56=4 \times 5.6=22.4$. th understanding $2 / 3 \times 3 / 5$ e understanding of $p v$ to $\times 4 \div 100=0.64 \text { and } 24 \div$ 80			
I can calculate powers $4^{3}=4 \times 4 \times 4=64$, and factorials $4!=4 \times 3 \times 2 \times 1$					I can solve problems of the form $\mathrm{a} / \mathrm{b} \times \mathrm{c}=\mathrm{d}(\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are whole numbers) where one number is unknown	$\begin{aligned} & \text { e.g., } 4 / 7 \times[]=24 \text { or }[] \% \\ & \text { of } 76=19 \text {. } \end{aligned}$			
I can express decimals as fractions and vice versa	e.g., $2.47=2+4$ tenths +7 hundredths or 247 hundredths.				I can compare size of two fractions by converting	e.g., $2 / 3>4 / 9$ because $2 / 3$ is greater than one half or because $2 / 3=6 / 9$			
I can solve add/sub with decimals and fractions	e.g., $13.2-5.79=7.41$ and $3 / 4+7 / 8=15 / 8$ (Denominators must be related multiples)				I can find equivalent ratios by scaling up/down	e.g., 2:5 is same ratio as $8: 20$ or $12: 18$ is the same ratio as 2:3			
I can recognise when sharing division situations give equal or unequal answers	e.g., 3 pizzas shared between 5 is a smaller share than 2 pizzas shared between 3 people.				I can find equivalent rates	e.g., 18 km in 15 mins is same speed as 72 km in 60 mins			
I can find how many measures of a fraction fit into one	e.g., A trip used 2/5 tank of petrol. How many trips can be made on a full tank (1 $\div 2 / 5=5 / 2=21 / 2)$				I recognise when two 'fractions of an amount' situations give equal or unequal answers	e.g., 75% of $\$ 12$ is same as 25% of $\$ 36$			
I know the equivalent decimal and percentage forms for everyday fractions.	Eg - $3 / 8=$ $375 / 1000=$ 0.375 - $3 / 8=37.5 / 100$ $=37.5 \%$. - $240 \%=2.4=$ 12/5.				Know fractions from halves, eighths and tenths as decim convert back to simplest for	thirds, quarters, fifths, als/percentages and me.g., $0.8=4 / 5$.			
I see a mental number line and am able to locate position of integers and decimals on a given line to scale.					I know the significance of positions	e.g., 24.671 where 7 means seven hundredths, 3.509 has 35.09 tenths, 350.9 hundredths, 3509 thousandths.			
I can calculate problems like $4.2-2.68=$ [] by decomposing it as the difference between 420 hundredths and 268 hundredths,					I know one hundredth equa thousand, 30.4 divided by	s ten divided by one ne hundred equals 0.304 .			
I know the effect of adding/subtracting integers on a number line	e.g., $+3--2=[]$ and $+3++2=[]$ have the same answer, +5								

Mathematics: Level 4 ALGEBRA

Mathematics: Level 4 - POSITION AND ORIENTATION		
Position, direction and pathways can be operated on using coordinate systems and maps.		
I can...	S	P
Convert scale on a map to actual measurements,	T	
Describe any direction given the orientation of North.		
Give/interpret location of a map feature using grid references on a range of maps: street maps, topographical maps, world maps.		
Follow instructions using		
o Compass		
o Distances		
o Grid references by interpreting scale maps. Eg Auckland to Wellington		

Mathematics: Level 4 -SHAPE			
I can...	s	P	T
- Sort shapes by classes: o number and relationship of sides (equal/parallel) o number and nature of angles (4 right angles) - symmetry and shape of faces/surfaces (3D shapes)			
Know that polygons are defined by no. of sides, (triangles, quads, hex, oct).			
Know that 3D shapes are defined by the nature of faces/surfaces (prisms, cylinders, prisms, cones, regular polyhedra).			
Describe \& identify classes of 2D closed curves and their 3D equivalents by rotation' circles and spheres, ellipses and ellipsoids.			
Find subclasses: squares within rectangles, rectangles within parallelograms, parallelograms within quadrilaterals.			
Identify and describe classes that are disjoint scalene, isosceles, prisms and pyramids			
Create 2D drawings from 3D-Isometric projections, plan views, nets.			
Construct a model from 2D drawings.			
Visually 'unwrap' 3D shapes to visualise them as nets			

Mathematics: Level 4-TRANSFORMATION

Some properties of objects do not change under different transformations.

Ican ...	S	P
Know the invariant properties of a figure do not change.	T	
- Rotate; lengths, areas, angles don't but orientation does.		
- Reflect; lengths, areas, angles don't but orientation does.		
- Translate; length, areas, angles and orientation don't.		
- Enlarge (positive); angles and orientation don't but lengths and areas do.		

Mathematics: Level 4 - STATISTICS		
PPDAC- Telling the story in detail with supporting evidence. Thinking beyond the data provided.	P	T
I		
Use statistical enquiry cycle to plan and conduct investigations: o Pose questions o Consider data to collect (multivariate) oDather/sort the data Ask summary comparison, summary and relationship questions answer to my question.		
Decide which variables are important to answer investigation		
Consider methods of data collection- samples, surveys, bias		
For category data display my information using tally charts, frequency tables, pictographs, bar graphs, strip graphs, pie charts		
For measurement data display my information using dot plots, stem and leaf graphs, scatterplots.		
For time series data display my information using line graphs		
Use technology to find and justify patterns including differences and similarities e.g., clusters, outliers, association of variables		
Evaluate strength of argument proposed by others.		
Consider weight of the findings	e.g., appropriateness of sampling methods (sample representative), quality of data collection (fairness, Q asked), data analysis (tech used, choice of displays) extent to which claims are made and supported by the evidence	

Mathematics: Level 4 - PROBABILITY				
Estimating probabilities and probability distributions from experiments and deriving probabilities and probability distributions from theoretical models for two-stage chance situations.				
I can...		S	P	T
Know that probability is about the chance of outcomes occurring.				
Know that it is not possible to know the exact probability of everyday situations.				
Use trialling to gain information and I understand that trial samples vary.				
Know that there can be variation between expected outcomes and experimental outcomes.				
- Use systematic models for sim - Listing o Tree/network diagrams o Tables.	le one or two stage situations:			
Compare distributions from my trials with expectations from models accepting variation and independence.				
Use benchmarks like half (50\%), third (33.3\% and 66.6\%), quarters (25% and 75%), fifths ($20 \%, 40 \%, 60 \%$, 80\%) tenths (10\%, 20\%,)				
Describe certain outcomes by fractions equalling 1 (100\%)				
Describe impossible outcomes with fractions equalling 0 (0\%)				
Know that in realistic situation where probabilities are estimated	e.g., bottle landing upright, it is expected to accept variation from exact fraction e.g., 37 out of 100 were upright which is about 33.3%			
Know that the count of all possible outcomes gives the denominator of a probability fraction	e.g., two dice have 36 possible outcomes.			
Know that he count of desired outcomes gives the numerator	e.g., 9 ways to get a total of 2,4 or 6 so prob is $9 / 36$ or $1 / 4$.			

